当前路径: 皮学网 学习方法 初中学习方法 初三学习方法内容

初中数学公式总结归纳

作者:bianji1 发布时间:2022-05-31 09:00:43 更新时间:暂无 阅读:10508 投诉 下载本文

(二)换元法 例2,(x+5)+(y-4)=8 (x+5)-(y-4)=4 令x+5=m,y-4=n 原方程可写为 m+n=8 m-n=4 解得m=6,n=2 所以x+5=6,y-4=2 所以x=1,y=6 特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因

初中数学公式总结归纳

初中数学公式总结归纳

  设ax+by=c,

  dx+ey=f,

  x=(ce-bf)/(ae-bd),

  y=(cd-af)/(bd-ae),

  其中/为分数线,/左边为分子,/右边为分母

  解二元一次方程组

  一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

  求方程组的解的过程,叫做解二元一次方程组。

  消元

  将方程组中的未知数个数由多化少,逐一解决的想法,叫做消元思想。如:{5x+6y=72x+3y=4,变为{5x+6y=74x+6y=8

  消元的方法

  代入消元法。

  加减消元法。

  顺序消元法。(这种方法不常用)

  消元法的例子

  (1)x-y=3

  (2)3x-8y=4

  (3)x=y+3

  代入得(2)

  3×(y+3)-8y=4

  y=1

  所以x=4

  这个二元一次方程组的解

  x=4

  y=1

  教科书中没有的,但比较适用的几种解法

  (一)加减-代入混合使用的方法.

  例1,13x+14y=41(1)

  14x+13y=40(2)

  解:(2)-(1)得

  x-y=-1

  x=y-1(3)

  把(3)代入(1)得

  13(y-1)+14y=41

  13y-13+14y=41

  27y=54

  y=2

  把y=2代入(3)得

  x=1

  所以:x=1,y=2

  特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.

  (二)换元法

  例2,(x+5)+(y-4)=8

  (x+5)-(y-4)=4

  令x+5=m,y-4=n

  原方程可写为

  m+n=8

  m-n=4

  解得m=6,n=2

  所以x+5=6,y-4=2

  所以x=1,y=6

  特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。

  (3)另类换元

  例3,x:y=1:4

  5x+6y=29

  令x=t,y=4t

  方程2可写为:5t+6*4t=29

  29t=29

  t=1

  所以x=1,y=4